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Abstract—Despite the recent advances in UWB systems es-
pecially after releasing the IEEE 802.15.4z standard, achieving
the “cm” level ranging accuracy and precision using UWB in a
general multipath environment is very challenging. In this paper,
we introduce a successive threshold-based multipath mitigation
algorithm (STM) that improves the ranging performance in mul-
tipath conditions. We further improve the ranging performance
of STM in multipath conditions by aiding the STM with STMnet
as a neural network that estimates the ranging error of the
STM. Using a UWB packet simulator, we show that the (mean,
Q95) of ranging error for the STM aided by STMnet achieves
up to (−0.07cm, 0.63cm), (−0.49cm, 21.3cm), and (0.06cm,
39cm) for LOS environment, LOS residential and LOS office
multipath environments, respectively. The improved performance
using STMnet is at the cost of 330KB of required memory and
232K of floating point operations.

Index Terms—Channel impulse response, leading-edge, multi-
path, neural network, range estimation, UWB

I. INTRODUCTION

THE high temporal resolution of the Ultra-WideBand
(UWB) signal yields a more accurate and precise range

estimation compared to other Internet of Things (IoT) alternate
systems such as Bluetooth and Zigbee. This enables a myriad
of localization-critic applications such as asset tracking for
warehouses or life stocks [1], [2], service robots [3], and
passive entry and start for smart cars/buildings [4]. UWB
system is capable of joint communication and sensing, where
the sensing is based on estimated Channel Impulse Response
(CIR) via exchanging the UWB packets which can carry the
data as well. The range estimation in UWB is based on Time of
Flight (ToF) estimation. The ToF can be estimated by finding
the time of arrival of the peak of the first path, which is referred
to as Line-of-Sight (LOS) path in the estimated CIR [5].

Leading Edge (LE) algorithms [6], [7] has been proposed
to find the lead of the first detectable path, which is used to
estimate the peak of the first path. This method has an accuracy
limited by the sampling rate of the receiver [7]. Maximum-
likelihood-based peak estimation can further improves the
accuracy of the first peak estimation in the LOS channel by
more than one order of magnitude with negligible compu-
tational complexity [8]. Nevertheless, the accuracy of range
estimation in UWB is still limited by the Non-LOS (NLOS)
paths, in the so-called multipath conditions. Recently, Neural
Network (NN)s are employed to improve the UWB ranging
performance in the multipath condition. In particular, [9] uses
all the CIR samples as the input of 2D-Convolutional Neural

Networks (CNN) to estimate the range, which in turn requires
a large memory and computational complexity, i.e., 4MB
of memory and 1.4M floating point operations (FLOPs). In
[10], 1D-CNN is trained based on a measured data set to
estimate the ranging error of the LE-based range estimation.
The required memory and computational complexity of the
trained model is in the order of 1MB and 1MFLOPs and
it is not clear how the trained NN performs in the general
multipath environment models.

In this paper, we focus on the problem of range estimation
in mainly multipath environments using the estimated CIRs
from exchanging the IEEE 802.15.4z-compliant packets be-
tween two nodes. To make the proposed methods general, we
focus on the LOS channel (denoted by CM0), IEEE channel
model for the LOS residential environment (known as CM1
in [11]), and IEEE channel for the LOS office environment
(known as CM3 in [11]). We first propose a successive
multipath mitigation algorithm which we referred to as STM.
STM successively removes the impact of dominant multipath
components in the estimated CIR. At the last stage of the
algorithm, STM finds the peak of the LOS path in the updated
CIR after multipath mitigation. We further improve the ranging
performance of the STM algorithm using STMnet as a neural
network (NN) which estimates the ranging error of the STM.
We show that as STMnet requires only 61 samples of CIR
around the STM estimated value, the required memory and
computational complexity is limited, i.e., 330KB of memory
and 232K FLOPs. We show that Q95 of ranging error as a
measure of ranging precision for the STM aided by STMnet
achieves 0.63cm, 21.3cm, and 39cm for CM0, CM1, and CM3,
respectively1.

A. Preliminaries

The range between two UWB devices (also referred to as
initiator and reflector) in IEEE 802.15.4z is estimated using
Single-Sided Two-Way Ranging (SS-TWR) or Double-Sided
Two-Way Ranging (DS-TWR) [5]. In Fig. 1(left), SS-TWR
for range estimation between two device [5] is shown using

1Notation: Boldface letters are used for vectors e.g., x. x2 stands for the
element-wise squared of x. x(v), x(v1 : v2), x(x > 0), and x(x < 0) are
the v-th component of x, a slice from v1-th to v2-th components of x, positive
components of x, and negative components of x, respectively. max(x) gives
the component of x with maximum value. “==”, “&”, “|”, and “̄.” denote
equality, AND, OR, and NOT logical operands, respectively. ⌊x⌋ and |x|
stands for the floor value and absolute value of x, respectively. KB, MB,
and K denote the kilobytes, megabytes, and kilo, respectively. Q95 of x is
defined as the difference between 97.5%-quantile and 2.5%-quantile of x.978-8-3503-8544-1/24/$31.00 ©2024 IEEE



Fig. 1. SS-TWR procedure (left) and the SP3/SP0 packet structures with an
example about the spreaded SYNC sequence (right).

Scrambled Time Sequence (STS) Packet Configuration 3 (SP3)
ranging frame, and STS Packet Configuration 0 (SP0) data
frame. SP3 packet consists of Synchronization (SYNC), Start-
of-Frame Delimiter (SFD) and STS. SP0 packet replaces the
STS by Physical Layer Header (PHR) and Physical Layer
Service Data Unit (PSDU). The SYNC comprises of repeated
symbols where each symbol consists of a spreaded code with
periodically ideal cross correlation properties. An example for
the spreaded code and the corresponding pulse shaped signal
is shown in Fig. 1 (right). The SFD is used to identify the end
of the SYNC. Pseudo randomized pulses in STS improves
the security of the ranging [5]. In SS-TWR, the ToF can
be computed using the Tround and Treply duration captured
at the initiator and reflector, i.e., ToF=(Tround − Treply)/2,
where Treply value is communicated to the initiator using SP0
data packet. In fact in SS-TWR, SP3 and SP0 packets are
used for sensing and communication purposes, respectively.
To compute Tround and Treply, both devices shall capture
the Time of Departure (ToD) and Time of Arrival (ToA)
timestamps of the transmitted/received packets. The value
of Treply can be sent using the PSDU section of the SP0
packet to the initiator. Tround can be calculated as Tround =
ToAinit − ToDinit − τcal − τc. ToAinit and ToDinit are
the timestamps in which the UWB pulse after SFD is at the
initiator’s receiver and transmitter, respectively, τcal is the total
transmitter and receiver delays including the antenna delays (to
be calibrated in advance), and τc is the time correction value
of the detected path (which is used for time capturing) in the
initiator estimated CIR from the LOS path. We highlight that
the detected path at the initiator and reflector can be LOS or
NLOS, hence, the time correction value is essential for the
ToF computation. Without loss of generality, in the following,
we focus on the essential step in Two-Way Ranging (TWR),
in which it is required to estimate the peak position of the
LOS path from the estimated CIR.

II. SYSTEM MODEL

The UWB system model consists of transmitter (TX),
LOS/NLOS channels and receiver (RX). At the transmitter,
the IEEE 802.15.4z-complaint UWB packet (SP3 or SP0) is
generated in which the TX sequence is pulse shaped and then
amplified by the power amplifier. Before RX processing, the
impact of hardware nonidealities are added. First, due to the
possible crystal offset between the TX and RX, frequency

and time errors are added. Then, the signal passes a sequence
of low-pass filters and then the impact of front-end gain and
thermal noise including the noise figure of the receiver chain
is added. The resulting signal is then quantized using analog-
to-digital converter (ADC). The hardware models used in this
paper corresponds to the design presented in [12]. The receiver
system model is shown in Fig. 2. The Rx processing block
detects the packet and performs frequency and time synchro-
nization. The synchronization is done by computing the cross
correlation between the reference transmitted sequence and the
received signal [12]. After the synchronization, the receiver
performs CIR estimation and starts searching for the SFD.
After SFD detection, the receiver either estimates another CIR
using the STS sequence or decodes the payload [5]. The output
of the RX processing in Fig. 2 for the v-th sample in the NLOS
channel can be modeled as [8]∑Y

i=1(aig (v − τi) e
jθi(v)) + z(v), (1)

where Y , ai, τi, θi(v), z(v) are the number of NLOS com-
ponents, i-th complex channel coefficient, i-th channel delay,
phase shift due to i-th channel delay in addition to the un-
known phase of the i-th path due to residual Carrier Frequency
Offset (CFO) and hardware nonidealities, and correlated noise
due to cross correlation operation at the RX, respectively.
Furthermore, g(v) is the cross correlation of the TX and RX
impulse responses, i.e., g(v) =

∫ +∞
−∞ sTX(t)sRX(t− v)dt,

where sTX(t) and sRX(t) are the TX and RX impulse
responses, respectively. In Fig. 2, the absolute-squared of the
CIR is computed which removes phases. We referred to the
absolute-squared CIR as h0. If the delay of two paths are
separated by at least Ts (sampling time), the signal after the
absolute-squared operation in Fig. 2 can be approximated as

h0(v) ≈ ∑Y
i=1(|ai|2g2 (v − τi)) + z̃(v), (2)

where z̃(v) is modeled as a real-valued correlated Gaussian
with the covariance given in [8, Proposition 1]. This approxi-
mation is valid due to narrow width of g(v) for pulse shapes
used in UWB [5], in which the other cross terms values due
to absolute-squared operation become negligible. As can be
seen from Fig. 2, LE algorithm is executed which estimates
the noise variance of CIR (Nest) and uses Nest to find the
rising edge of the first path of h0, referred to as LE path
(see e.g., [6], [7] for details about the LE algorithm). Then,
the local peak after LE path is found, which we referred
to as idxh0

LE−PK . The range estimation using idxh0

LE−PK is
called LE-only in this paper. We refer to the list of dominant
paths in h0 as Lp. Note that Lp can be found by setting
a noise dependent threshold on the h0 samples. In [8], an
Maximum Likelihood (ML)-based interpolation block is pro-
posed which improves the accuracy of LE-only scheme with
small additional computational complexity. ML interpolation
block first over-samples h0 around the idxh0

LE−PK index, then,
it applies an ML-based algorithm to probabilistically finds
the peak position. The scheme proposed in [8] corresponds
to the lower branch of Fig. 2, which we refer to it as ML
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Fig. 2. The receiver system model for range estimation using the proposed
method in this paper and the method presented in [8].

Fig. 3. Flow chart of the STM algorithm.

interp.-only in this paper. In the upper branch of Fig. 2, we
propose ranging in multipath, which employs the ML-based
interpolation, Lp, h0, idxh0

LE−PK , and Nest to improve the
ranging accuracy in the NLOS channel. In the next section, we
first propose a successive threshold-based multipath mitigation
algorithm, referred to as STM. We then improves the ranging
performance of STM using STMnet.

III. RANGING IN MULTIPATH ENVIRONMENT

A. STM algorithm

The flow chart of STM algorithm is shown in Fig. 3. In
what follows, we explain details of STM.

1) Input/output: The inputs of STM are
Lp,h

0, idxh0

LE−PK , and Nest. As explained in Sec. II,
Lp is the dominant path list of the estimated CIR and
h0 is the absolute-squared of estimated CIR. Furthermore,
idxh0

LE−PK and Nest are given by applying the LE algorithm
(e.g., [6], [7]) based on the input of h0. The output of STM
is the LOS delay estimate which is proportional to the range,
and we referred to as τLOS

est/STM .
2) Path list selection/LE back search: As only close NLOS

paths to the LOS path can impact the accuracy of LOS peak
estimation, STM first filters Lp such that only close paths

Algorithm 1: LE back search

Input: h0, idxh0

LE−PK , Nest

Output: idxBS

Initialization: idxBS = 0, select WBS , P1, and P2

1: if (h0(idxh0

LE−PK −WBS) > P1Nest & h0(idxh0

LE−PK −WBS − 1) > P2Nest) |
(idxh0

LE−PK < idx1) then
2: idxBS = 1
3: end if

to the idxh0

LE−PK remains 2. Furthermore, as the filtered
paths may belong to one NLOS path due to the width of
pulse used in pulse shaping, only paths in this filtered list
which corresponds to the local peaks of h0 are considered as
the candidate paths for multipath mitigation. We assume that
after such path list selection, the candidate path list indices
{idxQ, · · · , idx1} will be used as the input for the iterative
step of the STM, where idxQ is the farthest path from the
idxh0

LE−PK path. The LE back search algorithm is given in
Alg. 1. Alg. 1 is based on the intuition that if the local peak
at idxh0

LE−PK index is due to the superposition of LOS path
with strong NLOS path, the values of h0 which are only few
samples apart from idxh0

LE−PK should be much larger than
Nest. In this situation LOS path is hided by the NLOS path,
hence, it is necessary to perform the LE algorithm again after
mitigating of all paths in {idxQ, · · · , idx1} list. The output
of Alg. 1 is the index of back search (idxBS) will be used
in Alg. 2. Furthermore, in Alg. 1 WBS is the back search
window, P1 and P2 are selected thresholds.

3) Iterative mitigation of paths: For the j-th iteration where
j ∈ {Q, · · · , 1}, we use the ML interpolation block (see
[8] for details) to estimate τ estidxj

as the peak position of
path index idxj in the j-th absolute-squared CIR profile,
referred to as h̃

j
(v). We remark that iteration starts such that

h̃
Q
(v) = h0(v). Using τ estidxj

and (2), amplitude-squared of
the path index of idxj can be approximated as3

|aestidxj
|2 ≈ h̃

j
(τest

idxj
)

g2(τest
idxj

−τidxj
)
, (3)

where the value of g2(τ estidxj
− τidxj

) can be computed by
interpolating of g2(v). Given τ estidxj

and |aestidxj
|2, the path

index idxj is mitigated from h̃
j
(v), which gives the updated

absolute-squared CIR profile, i.e.,

h̃
j−1

(v) = h̃
j
(v)− |aestidxj

|2g2
(
v − τ estidxj

)
. (4)

4) Check multipath mitigation conditions: This stage of
STM is given in Alg. 2, where (5)-(7) are conditions used
in Alg. 2. In Alg. 2, Wt is a window size, and T1, D1-
D4 are the selected thresholds. From a high-level perspective,
Alg. 2 verifies some threshold-based conditions in the output
of iterative stage of STM to ensure that hfinal can be used for

2Assuming 1GHz sampling rate, we use the paths within 8ns from the path
index idxh0

LE−PK .
3An ML-based estimation problem for |aestidxj

|2 can also be formulated,
however, we did not achieve any noticeable ranging performance improvement
compared to the approximation given in (3).



Algorithm 2: Check multipath mitigation conditions

Input: h̃
0
, h̃

1
, idx1, Nest, idxh0

LE−PK , idxBS ,
Output: hfinal, idxhfinal

LE−PK

Initialization: Select Wt, T1, D1, D2, D3, D4

1: h̃
0

trim ≜ h̃
0
(idx1 −Wt : idx1 +Wt);

2: Find ratio of the sum of negative to positive values of h̃
0

trim:
Rh̃

0
trim ≜ |∑(h̃

0

trim(h̃
0

trim < 0))|/∑(h̃
0

trim(h̃
0

trim > 0))

3: Run the LE algorithm with input h̃
0

and find the first peak
after LE index, referred to as idxh̃

0

LE−PK

4: h̃
LE

trim ≜ h̃
0
(idxh̃

0

LE−PK −Wt : idx
h̃
0

LE−PK +Wt);
5: Find ratio of the sum of negative to positive values of h̃

LE

trim:
Rh̃

LE
trim ≜ |∑(h̃

LE

trim(h̃
LE

trim < 0))|/∑(h̃
LE

trim(h̃
LE

trim > 0))
6: if C1 & C2 & C3 then
7: if C4 then
8: hfinal = h̃

1
, idxhfinal

LE−PK = idxh0

LE−PK

9: else
10: hfinal = h̃

0
,

11: Run the LE algorithm with input hfinal and find the first
peak after LE index, referred to as idxhfinal

LE−PK

12: end if
13: else if C5 then
14: hfinal = h̃

0
,

15: if idxBS == 1 then
16: Run the LE algorithm with input hfinal and find the first

peak after LE index, referred to as idxhfinal

LE−PK

17: else
18: idxhfinal

LE−PK = idxh0

LE−PK

19: end if
20: else
21: hfinal = h̃

1
, idxhfinal

LE−PK = idxh0

LE−PK

22: end if

range estimation. These conditions aims to prevent undesired
situations in multipath mitigation such as removing the LOS
path. As an example, in Alg. 2, lines 1-5 define Rh̃

0
trim and

Rh̃
LE
trim as metrics to evaluate the local behavior of h̃

0
around

the last mitigated path (i.e., idx1) and the local peak after the
LE index of h̃

0
(i.e., idxh̃

0

LE−PK). As the values of h̃
0

should
be positive (due to absolute-squared operation), if the last
mitigated path was a LOS path, there should be large negative
values in h̃

0
, hence, the Rh̃

0
trim and/or Rh̃

LE
trim are large

values. By setting a threshold on these metrics, STM prevents
mitigating of the LOS path. We highlight that in Alg. 2,
C1&C2&C3&C̄4 or (C1&C2&C3)&C5 are the necessary and
sufficient conditions for accepting h̃

0
for range estimation.

Furthermore, (5)-(7) are empirically designed by analyzing the
range estimation performance using h̃

0
when the UWB packet

simulator based on the IEEE channel models [11] is employed.
5) ML interpolation block: In this final stage of STM, ML

interpolation block (see Sec. II and [8] for details) will be
applied based on inputs of hfinal and idxhfinal

LE−PK , which gives
the final LOS delay estimate τLOS

est/STM that corresponds to the
estimated peak of the LOS.

B. STMnet

In the STM algorithm, there are some thresholds (see (5)-
(7)) which depends on the multipath environment, system

parameters and nonidealities4. For a given set of propagation
channels and system parameters, as we will show in Sec. IV,
the ranging performance has a limit. This limitation is due to
the fact that the best thresholds for a given channel are not
necessarily the best for other channels.

To improve the ranging performance of the STM, we assist
the STM by a NNs, which we referred to as STMnet. The
block diagram of the ranging architecture using STMnet is
shown in Fig. 4. STMnet estimates the ranging error of the
STM. As it can be seen, first h0 is trimmed around τLOS

est/STM .
In particular, we refer to the trimmed CIR of length 61 samples
as ht ≜ h0(⌊idxLOS

est/STM⌋ − 20 : ⌊idxLOS
est/STM⌋+ 40), where

idxLOS
est/STM stands for the index of τLOS

est/STM
5. This choice

is made as the h0 samples before and after ⌊idxLOS
est/STM⌋ can

provide information about the type of the multipath channel.
Furthermore, more samples after ⌊idxLOS

est/STM⌋ index is con-
sidered, as multipath paths arrives later than LOS path. The
trained NN estimates the range error τe. Finally, the estimated
LOS delay is given as τLOS

est/STM+STMnet = τLOS
est/STM − τe. STMnet

employs the STM algorithm as a pre-processing stage, which
determines the region in h0 where the LOS path is positioned.
To make the STMnet trainable for all channels, different power
levels, and possible hardware nonideality impacts, we found
that the input of the STMnet should be normalized. We used
the ’max’ normalization as used also in [9]. We refer to the
normalized trimmed CIR as ht

n = ht/max(ht).
The architecture of the STNnet is shown in Fig. 5. In Fig. 5,

we show the input size of the STMnet as well as the output size
of each hidden layer. ht

n is first padded to have the length 64,
which facilitates the dimension changing in the upcomming
2D convolution layers. As it can be seen, STMnet contains
two 1D convolution layers, three 2D convolution layers, four
fully connected layers, and one output layer, which outputs
τe. Each 1D/2D convolution layers are followed by a batch
normalization layer and the ReLu function is used as the
activation of the fully connected layers. We use the notation
“filters (n,m, s)” for convolution layers, where “(n,m)” are
the size of the filter and “s” stands for the stride size of
the convolution operation. The term “same” in Fig. 5 stands
for selecting the padding such that the first dimension in
1D convolution layer and the first two dimensions in 2D
convolution layers does not change. The output of the second
1D convolution layer is transformed into an 8× 8× 8 tensor.
This transformation is done by taking the 64 values along the
first dimension of the last 1D convolution layer and arrange
them into a 8× 8 matrix. Furthermore, the output of the third
2D convolution layer is transformed to an FC layer of size 512.
The use of 1D convolution layers can be motivated as the TX
signal is convolved with the channel response and received
by RX, hence, these layers can extract some temporal features
about the LOS and other closed by NLOS paths. Furthermore,

4Parameters such as low-pass filter responses. Nonidealities such as residual
uncompensated CFO/time slip after synchronization.

5Note that idxLOS
est/STM

is not necessarily an integer index due to employ-
ing the ML interpolation block, hence, the floor operation is used.
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Fig. 4. The block diagram of the ranging using STM aided by STMnet.

Fig. 5. The proposed STMnet.
the use of 2D convolution layers can be motivated as they can
provide some high level features about the channel type and
the paths that are far apart. Finally, the fully connected layers
estimates the range estimation error of the STM from such
extracted features.

In [10] and [9], NNs are used for estimating the range
from the unprocessed CIR. For the sake of comparison, in
Sec. IV, we use these networks as a substitute to STMnet
in the ranging architecture given in Fig. 4. We refer to such
ranging schemes as “STM+(CN1D [10])” and “STM+(CN2D
[9])”, respectively. Note the we slightly adapted the input size
of the networks in [10] and [9] such that ht

n can be used as
the input where the output is τe. As an ablation study, we also
substitute the STMnet in Fig. 4 by a fully connected network,
which we refer them as “STM+FC1”. FC1 contains 9 hidden
layers with Relu activation, where the number of neurons for
each hidden layer is 64, 128, 128, 256, 50, 50, 32, 16, 16.
We highlight that the ht

n and τe are also the input and output
of FC1. In Table I, we compare the complexity of STMnet
and all other NNs used as a substitute of STMnet in Fig. 4 in
terms of floating point operations (FLOPs) and the required
memory. The complexity analysis is based on [13] and FC1 is
designed with the same required memory as that of STMnet.

IV. SIMULATION RESULTS

We consider the mandatory Base Pulse Repetition Fre-
quency (BPRF) mode [5] in the simulation results. We also use
CM0, CM1, and CM3 [11] for performance evaluation. The
parameters of STM algorithm (see Algorithms 1&2) used in
the simulation results are WBS = 3 P1 = 60000, P2 = 30000,
Wt = 3, T1 = 0.13, D1 = 0.1, D2 = 10000, D3 = 2000, and
D4 = 2. For the sake of paper compactness, we only show
the results of range estimation using SYNC CIR, however, the
same methodology can be applied for range estimation using
the STS CIR. We use a UWB packet simulator which emulates

Table I
COMPLEXITY COMPARISON OF NNS USED TO ASSIST STM IN FIG. 4.

Neural Network FLOPs Memory

STMnet 232K 330KB
CN1D [10] / CN2D [9] 1.873M / 118K 2.61MB / 330KB
FC1 82K 330KB

all the TX and RX hardware components of the taped-out
chip [12]. 1GHz sampling rate, 40ppm Xtal offset, and 7-bit
ADC resolution is used in the simulations. We use the Mean
and Q95 of range error as the measure of range estimation
accuracy and precision, respectively. The training process
involved utilizing 20000 estimated CIR per received power (in
dBm) and per channel (CM0, CM1, CM3). For each estimated
CIR, the true range (ground truth), noise in the system, and
channel realization are randomly and independently chosen.
By applying the STM algorithm and using the true range τe is
computed which is used for training. We use Adam optimizer
with a learning rate of 0.0001, Mean Squared Error Loss
function, and a batch size of 2048. For the simulation results,
we use 5000 independent channel realizations per each power,
where different NNs under our study are not trained for.

In Fig. 6, we compare the mean and Q95 of range estimation
error for STM, STM aidded by STMnet (STM+STMnet), and
other schemes. As it can be seen, although the ML interp.-
only improves the ranging performance compared to LE-only
scheme in LOS channel (CM0), it gives a large ranging error in
NLOS channels (CM1 and CM3). The performance of the ML
interp.-only scheme is significantly improved using the STM
algorithm. In particular, the (mean, Q95) of ranging error for
the STM for −45dBm of RX power achieves up to (0.38cm,
0.9cm), (−0.79cm, 63.85cm), and (7cm, 105.9cm) for CM0,
CM1, and CM3, respectively. Furthermore, the ranging error
performance can be further improved using STM with different
NNs in the ranging architecture of Fig. 4. In particular, the best
performance in all channels are achieved by using the proposed
STMnet. In particular, the (mean, Q95) of ranging error for
the STM+STMnet for −45dBm of RX power achieves up to
(−0.07cm, 0.63cm), (−0.49cm, 21.3cm), and (0.06cm, 39cm)
for CM0, CM1, and CM3, respectively. From Fig. 6 and
Table. I, one can conclude that in multipath environment the
ranging architecture given in Fig. 4 with employing STMnet
provides the best performance-complexity trade-off.

V. CONCLUSIONS

STM as a successive threshold-based multipath mitigation
algorithm is proposed. It is shown that STM improves the
ranging performance in multipath conditions compared to
the LE-based scheme. The ranging performance of STM in
multipath scenarios is improved by employing STMnet which
estimates the range estimation error of the STM. The STM
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Fig. 6. Comparing the mean (left) and Q95 (right) of the range error for different STM, STMnet, LE-only [6], [7], ML interp.-only [8], STM+(CN1D [10]),
STM+(CN2D [9]), and STM+(FC1).

algorithm acts as a feature extraction module for STMnet
by providing the correct region in the CIR where the LOS
lies. Simulation results confirm that STM+STMnet provides
the best ranging performance in CM0, CM1, and CM3.
Furthermore, we showed that the memory and computational
complexity of STMnet is much smaller than other comparable
NNs proposed for ranging in the literature.
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